Exact short Poisson confidence intervals
نویسندگان
چکیده
The authors propose a new method for constructing a confidence interval for the expectation θ of a Poisson random variable. The interval they obtain cannot be shortened without the infimum over θ of the coverage probability falling below 1 − α. In addition, the endpoints of the interval are strictly increasing functions of the observed variable. An easy-to-program algorithm is provided for computing this interval.
منابع مشابه
Exact maximum coverage probabilities of confidence intervals with increasing bounds for Poisson distribution mean
A Poisson distribution is well used as a standard model for analyzing count data. So the Poisson distribution parameter estimation is widely applied in practice. Providing accurate confidence intervals for the discrete distribution parameters is very difficult. So far, many asymptotic confidence intervals for the mean of Poisson distribution is provided. It is known that the coverag...
متن کاملExact Statistical Inference for Some Parametric Nonhomogeneous Poisson Processes
Nonhomogeneous Poisson processes (NHPPs) are often used to model recurrent events, and there is thus a need to check model fit for such models. We study the problem of obtaining exact goodness-of-fit tests for certain parametric NHPPs, using a method based on Monte Carlo simulation conditional on sufficient statistics. A closely related way of obtaining exact confidence intervals in parametri...
متن کاملMonte Carlo Comparison of Approximate Tolerance Intervals for the Poisson Distribution
The problem of finding tolerance intervals receives very much attention of researchers and are widely used in various statistical fields, including biometry, economics, reliability analysis and quality control. Tolerance interval is a random interval that covers a specified proportion of the population with a specified confidence level. In this paper, we compare approximate tolerance interva...
متن کاملConfidence Bounds & Intervals for Parameters Relating to the Binomial, Negative Binomial, Poisson and Hypergeometric Distributions With Applications to Rare Events
We present here by direct argument the classical Clopper-Pearson (1934) “exact” confidence bounds and corresponding intervals for the parameter p of the binomial distribution. The same arguments can be applied to derive confidence bounds and intervals for the negative binomial parameter p, for the Poisson parameter λ, for the ratio of two Poisson parameters, ρ = λ1/λ2, and for the parameter D o...
متن کاملSAS® Macros for Exact Confidence Limits
Confidence intervals have a long history and have become an indispensable tool in statistical applications. The computation of confidence intervals for a mean based on normal (large sample) theory is straightforward and readily available in the SAS system through such procedures as PROC ANOV A and PROC GLM. For the case of small samples and non-normal distributions, however, normal theory based...
متن کامل